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The Physics case on 1 pageThe Physics case on 1 page

● Assuming the LHC will discover new physics …

● Will need a precision machine for measuring
 The mass of the new particles, e.g. the Higgs Boson
 Their cross-sections
 Their branching ratios

● If the LHC doesn't find new physics
 A Linear Collider has the precision to tell you what is 

wrong with the Standard Model

● The detector requirements are quite independent
 Doesn'matter if the Higgs mass is 120 or 180 GeV …
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  Example: The Higgs bosonExample: The Higgs boson
● LEP & Tevatron

 EW fits say that the Higgs is light mH< ~180 GeV

 LEP direct searches :  mH> 114 GeV

 Tevatron excludes area from  mH =158-175 GeV

● LHC
 Will find the Higgs unless ..

● there is none
● nature is very nasty

 But which Higgs is it ?
 Standard Model, SUSY ....
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Higgs propertiesHiggs properties

● Mass
 fixed parameter in the SM

● Width
 depends on the mass
 very small for light Higgs Bosons

● Spin
 Should be Spin 0

● Branching ratios
 can be very different for different models
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An exampleAn example

Standard Model MSSM case 1 MSSM case 2
68% 74% 70%
7% 8% 7%

WW 13% 10% 12%
ZZ 2% 1% 1%
cc 3% 2% 3%

7% 5% 7%

bb
ττ 

gg

mH=120 GeV

● Distinguishing between SM and MSSM becomes 
difficult, if the SUSY particles are very heavy
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LHC potentialLHC potential
● From various TDR's ...

● Branching ratios can be measured with 10 % 
precision at best

● Measuring rare Higgs decays probably impossible
 cc, gg, μμ,γγ

● Understanding the Higgs requires a precision e+e-

machine
 Clean environment
 Superior detector



7
  Marcel Stanitzki

What  do we need ?What  do we need ?

Looking at the Higgs again

Channels Requires

WW
ZZ
cc

Jets
ECAL

bb Jets + b-tagging
ττ tracking, ECAL+HCAL, PID

Jets + tracking + PID
Jets + tracking + PID
Jets + c-tagging

gg
γγ
μμ Tracking+PID

Higgs physics requires excellent tagging, 
tracking and calorimetry.

Much better than anything ever done before



8
  Marcel Stanitzki

LC Detector requirementsLC Detector requirements

● Impact parameter resolution
● Momentum resolution

 
● Jet energy resolution goal 

● Detector implications  
 Calorimeter granularity 
 Pixel size 
 Material budget, central 
 Material budget, forward

σ E
E

=
30%
E

 E

E
≈4%

σ E
E

=
60%
E

● Need factor 3 better than SLD
● Need factor 10 (3) better than LEP 

(CMS)
● Need factor 2 better than ZEUS

● Detector implications
 Need factor ~200 better than LHC 
 Need factor ~20 smaller than LHC
 Need factor ~10 less than LHC
 Need factor ~ >100 less than LHC
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Impact of Jet PerformanceImpact of Jet Performance

e+e-  ZH  qqbb @ 350GeV, 500fb→ → -1 

Mjj of two b-jets for different jet energy  resolution.
 → 40% luminosity gain

jet

jet

42 MeV

E
0.3

E

hM

δ

∆ =

= jet

jet

50 MeV

E
0.6

E

hM

δ

∆ =

=

Mbb (GeV) Mbb (GeV)
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W/Z separationW/Z separation

Dijet 1 Dijet 1

D
ij

e
t 

2

D
ij

e
t  

2

Separation hadronic WW/ZZ 
pairs !
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Design choicesDesign choices

● Excellent Vertex Detector
 Low mass, highly granular, close to interaction region

● Tracking 
 Barrel + Forward tracking
 Low mass + high momentum resolution

● Calorimetry 
 Exceptional Jet energy resolution

● Low Material budget
 Powering, cooling
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Calorimetry thoughtsCalorimetry thoughts

● Classical “LHC style” calorimetry cannot delivered 
desired performance

 HCAL resolution is the limiting factor

● Need for better approach: Particle Flow Algorithms 
(PFA)

 Particle Flow has been done at LEP .. to some extend
 But never been a key design goal

● In a typical ILC jet event on average
 60 % charged particles 
 30 % photons  
 10 % neutral hadrons
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PFA in a nutshellPFA in a nutshell
Calorimeter Clustering

Match Tracks with
 Calorimeter Clusters

Remove Photon
 Calorimeter Clusters

Track reconstruction

Remaining
EM-only Calorimeter Clusters

Remaining
Calorimeter Clusters

Remove associated
 Calorimeter Clusters

DONE

Charged particles

Neutral Hadrons

Photons
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Jet ResolutionsJet Resolutions

● Energy resolution about 14% (driven by HCAL)

● Confusion terms have bigger impact

 σjet
2 = σcharged

2 + σΕΜ
2 + σhadronic

2 + σconfusion
2 

+ σthreshold
2  +…

● Performance not limited by Calorimetry
 Need high granularity to reduce confusion !

Particle Class

Charged Tracking 60% neg.

Photons ECAL 30%

Neutral Hadrons HCAL (+ECAL) 10%

SubDetector Jet energy 
fraction

Particle 
Resolution

Jet Energy 
Resolution

10-4   √Echarged

11 % √EEM        
6 % √E

jet

40 % √E
hadronic

13 % √E
jet
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Sounds easySounds easy

● Associating showers to 
tracks 

 showers can overlap
 track ambiguities
 leakage

● Hadronic showers are very 
difficult

● PFA calorimeters
 Shower Images
 Huge number of 

channels
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Current StatusCurrent Status

● Pandora (Cambridge) is the most successful PFA

● Fulfills LC requirements

rms90(E Jet)

E Jet
=3.62±0.05
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Tracking thoughtsTracking thoughts

● Vertex detector with 5 layers
 20 µm pixels

● Tracking detector linking the vertex detector and the 
Calorimeters

 Several approaches

● Low material budget
 Low Power
 Gas cooling

● Keep Occupancy low
 Segmentation
 Time information
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Why Forward trackingWhy Forward tracking

● Let's again take the Higgs

● Dominant process for 
Higgs production at 
higher energies

● Tendency to be forward 
boosted

● Need decent tracking 
(and calorimetry) in the 
forward region

e+ e- →H νe ν̄e

100 1000 10000
0.0
0.1
0.1
0.2
0.2
0.3
0.3
0.4
0.4
0.5
0.5

σe+ e-
→H νe ν̄e

p
b

-1

GeV
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Differential Cross-sectionDifferential Cross-section

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

500 GeV
1 TeV
2 TeV
3 TeV

cos(θ
Higgs

)

σ

σ total
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Example : Material budgetExample : Material budget

The material budget of the ATLAS tracker

ATLAS ATLAS
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Current EstimatesCurrent Estimates

● This is the current estimate for a Tracking system of an 
ILC detector

● We're there … in simulation
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Tracking StatusTracking Status

● Tracking performance is already very promising

● Need to monitor performance with more realistic 
detector description 

P
T
<500 MeV P

T
>500 MeV
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Designing a detector for PFADesigning a detector for PFA

● Particle Flow Algorithms (PFA) combines tracking and 
calorimeter information

● New design paradigm
 Detector is viewed as single fully integrated 

system, not a collection of different 
subdetectors

● PFA requires tracking and calorimetry to be inside the 
coil !

 This becomes a limiting factor
 Compactness is very important

● Keep an eye on the material budget
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SiD a PFA detectorSiD a PFA detector
Vertex
Detector

ECAL

HCAL

Solenoid

Tracker



25
  Marcel Stanitzki

System issuesSystem issues

● LC detectors run without triggering
 But Time-stamping of data is used

● Power distribution is challenging
 DC-DC conversion or serial powering
 Power-pulsing

● Closely related
 Material budget
 Cooling

● Push&Pull

● R&D on many issues has just started
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ILC Timing structureILC Timing structure

● ILC timing is very different to LHC
 Bunch spacing of ~ 300 ns (LHC 25 ns)
 2625 bunches in 1ms
 199 ms quiet time

● No Triggers 

● Occupancy dominated by beam background & noise

● Rule of thumb : ~ 1 hadronic event per bunch train

2625
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Benefits of time-stampingBenefits of time-stamping

150 BX integrated Applying Time-Stamping
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CLIC Bunch structureCLIC Bunch structure
Train repetition rate 50 Hz

CLIC

CLIC: 1 train = 312 bunches 0.5 ns apart 50 Hz

ILC: 1 train = 2680 bunches 337 ns apart5 Hz

● Assess need for detection layers with dedicated time-
stamping

 Other layers may integrate over the entire bunch

● Readout electronics will be different from ILC
 Consequences for power pulsing not clear yet

Consequences for a CLIC detector:
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Power PulsingPower Pulsing

● Highly Granular detectors 
 Lots of channels
 Lots of power-> Heat development

● But Duty-cycle does help
 ILC case 0.5 %
 Reduction of ~ 200 theoretically possible 

● Powering off front-ends during quiet time
 Not that trivial
 Power pulsing in 4 or 5 T fields ...
 My opinion , a factor 100 would be already good
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Power DeliveryPower Delivery

● Current Experiments use point-to-point cables 
 One supply  one module→

 Low Voltage & High current  Lots of material→

● Several new approaches
 Serial Powering
 DC-DC Conversion

● Serial Powering
 Daisy-chaining approach (Christmas tree lights)
 One cable for many modules

● DC-DC Conversion
 Bring Power as HV, generate LV locally
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Push-PullPush-Pull

● Community would like two detectors 
 Different technologies
 Cross-check
 Good experience in the past (CDF, D0...)

● Accelerator team prefers one interaction region
 Main driver is cost

● Push-Pull idea
 Detectors share one interaction region
 Swap-over every few weeks
 Never been done before
 Engineering challenge (nightmare)
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SiD in the hallSiD in the hall

Oriunno
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Collision hall designCollision hall design
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Push & PullPush & Pull

30 m

On beam Off beam
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TimelineTimeline

The time intervals in this estimate appear conservative.

With careful engineering and an experienced, well rehearsed 
crew, it seems plausible to make the push-pull cycle, not 
including the beam based alignment and re-tuning of the 
machine, in less than a day.

The converse is also true!

M. Breidenbach TILC2009
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Current Detector StatusCurrent Detector Status
● 3 Detector “Letters of Intent” submitted (1/Apr/2009)

 ILD, SiD and 4th Concept
 ILD and SiD built on Particle Flow
 4th based of Dual-Readout Calorimetry

● International Detector Advisory Group (IDAG) Review 
 Validated ILD and SiD in Aug 2009
 Go-ahead for a Detailed Baseline Design 
 Due End 2012

● SiD and ILD have two different approaches to PFA
 SiD : Compact & High Field
 ILD: Large & Low Field
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ILD + SiDILD + SiD

Vertex

Tracker

ECAL

HCAL

Coil

Muons

5 layer Si-Pixels5 layer Si-Pixels

Silicon onlySilicon onlySilicon + TPCSilicon + TPC

SiWSiW

Fe + ScintillatorFe + Scintillator Fe + RPCFe + RPC

3.5T Coil3.5T Coil 5T Coil5T Coil

Muon SystemMuon System



38
  Marcel Stanitzki

Variants for CLICVariants for CLIC

● Both SiD and ILD have 
adapted versions for CLIC

● Vertex detector moves  out 
r ~ 4 cm

 More background

● Tungsten as HCAL absorber 
 Minimize leaking at 3 

TeV
 Has to fit inside the coil

● Electronics, timing
 Already mentioned that

SiD
A compact high-Field PFA detector

SiD for ILC

SiD for CLIC
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What would we want the What would we want the 
machine to do ?machine to do ?

● Vary beam energy

● Threshold scans

● Small Beam spread

● Low background rates

● High luminosity at every energy

● Supportive of push-pull
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Varying the beam energyVarying the beam energy

● Examples from the LEP era
 Z 
 W+W-

● Linear Collider Studies
 tt

● Energy range of the machine
 Ultimately depends on LHC results
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LEP -ILEP -I

● Measuring the width of 
the Z Boson

● Determination of the 
number of generations in 
the SM

● Ability to modify beam 
energy was crucial to this 
measurement



42
  Marcel Stanitzki

LEP-IILEP-II
● LEP-II measured 

 W+W- cross-section
 W mass

● Important result confirming the 
SM

● W Mass measurement
 From Threshold (~ 40 pb-1)
 Direct reconstruction (~ 2.5 

fb-1)

● Result
 MW(direct) = 80.387 ± 0.026(stat.) ± 

0.024(syst.) GeV/c2

 MW(threshold) = 80.40 ± 0.20(stat.) ± 
0.07(syst.) ± 0.03(LEP) GeV/c2



43
  Marcel Stanitzki

Top mass measurementTop mass measurement

● Scan around Top threshold

● Requires precise 
measurement of beam 
energy, ISR ..

● Potential accuracy on top 
mass

 100-200 MeV

● LHC (projected)
 1 GeV

● Tevatron (measured)
 1.1 GeV
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Energy of the machineEnergy of the machine

ILC CLIC
0

500

1000

1500

2000

2500

3000
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A exemplary run plan ...A exemplary run plan ...

● Baseline
 250 GeV for light Higgs measurements
 350 GeV run (mainly top quark)
 500 GeV High energy run
 Potential  GigaZ program

● Upgrade to 1 TeV
 780 GeV run (A SUSY particle threshold)
 1 TeV High energy run

● Important to have decent luminosity at all points
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Beam energy constraintsBeam energy constraints

● The Beam Constraint is a 
very powerful tool

● Classic 4C approach
 Total momentum=0
 Total energy=√s

● Additional mass 
constraints like Z mass 
help

● e.g. 
 e+ e- →HZ →ZWW * → qqqqqq
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ILC & CLIC exampleILC & CLIC example

Work in progress

500 GeV Work in progress

3 TeV

● Maximize luminosity in the peak

● Long tails need to be modeled in Simulation
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Beam backgrounds : CLICBeam backgrounds : CLIC

● Incoherent e+e- Pairs
 Photons interacting 

with other 
electron/photon

 Peak at lowest 
Energies

 few 105 particles/BX

● Coherent e+e-  pairs
 Direct photons 

conversion in strong 
fields

 Cutoff at near 10 mrad
 108 particles/BX

IWLC2010
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Beam background : CLICBeam background : CLIC

● γγ pairs

● 3.3 events/BX
 30 particles hit detector
 Deposit ~ 50 GeV 
 Forward-peaked

● 15 TeV dumped in the detector per 156 ns bunch train !

● Reconstruction Challenge 
 Mini-jets
 Overlap with physics events

IWLC2010
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SummarySummary

● Lots of challenges for LC detectors
 Too many for just 45 minutes

● Lots of R&D activity to address them
 Material for several seminars

● Impressive Progress
 Interplay between Machine and Detectors more 

important than ever 

● Acknowledgments
 Thanks to M. Oriunno, J. Marshall, R. Partridge, J. Brau, 

M. Thomson, A. Sailer, M. Breidenbach and T. Barklow 
for material and discussion
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